

AI-Led Network Optimization

For a Leading Electrical Equipment Manufacturer

Document Type Case Study Report

Date 15/04/2025 Version

Top Indian Electrical Equipment Company

DOCUMENT TYPE Manufacturing & Distribution

CLIENT TYPE 40 Branches | 17 Warehouses | 12 Plants LOCATION India

Sector Focus: Electrical manufacturing with large-scale B2B distribution requiring efficient plant-to-customer routing and cost-optimized logistics.

Executive Summary

Translytics worked with one of India's top electrical equipment manufacturers to optimize its logistics network. Rising operational costs and misaligned warehouse-routing structures prompted the need for Al-powered distribution planning. Translytics deployed its Network Optimization engine, using Center-of-Gravity simulations and route modeling to design a leaner, more cost-effective logistics network.

₹5.4L

Monthly Savings

18%

Truck Utilization

320

Auto-Dispatches/Mon

4 CoG

Simulations Executed

Challenge

The company's expanding distribution network caused significant inefficiencies:

High Logistics Costs & Route Inefficiency

- Misaligned plant-to-warehouse-to-customer flows
- High fuel, freight, and labor expenses
- Suboptimal truckloads leading to frequent empty or partial transfers

Manual, Non-Automated Dispatch Planning

- Heavy coordination effort
- No Al-driven triggers for inventory-based dispatches

Business Impact

\$ Rising cost-per-ton-km

Delays in customer fulfillment

High working capital due to poor stock movement

Contact Information

Translytics Network Optimization Engine

An Al-driven tool to model network efficiency and design better plant-to-branch-to-customer flows.

Center-of-Gravity (CoG) Simulation & Network Redesign

- Regional CoG modeling for optimized routing
- Multiple scenario variants tested for best cost, time, & fill rate outcomes

Primary & Secondary Flow Optimization

- Modeled plant-to-branch and branch-to-customer flows
- Evaluated alternate routes to cut logistics cost and transit time

Automated Dispatch Logic

- Inventory-based triggers for dispatch scheduling
- Reduced manual coordination and improved truck utilization

Impact & Results

Qualitative Improvements

- Better truck utilization and route consolidation
- November of the second second
- Streamlined dispatches with Al logic
- Faster response to distribution bottlenecks

Annual Impact Projection

₹65L+

Annual Savings 600+

Hours Saved/Month 15-20%

Fewer Empty Returns

100%

AI-Simulated Design

Technology & AI Implementation

Al & Simulation Features

- CoG logic engine
- Logistics cost predictor
- Route optimizer
- Load balancing predictor

Integration & Platform Features

- ERP-connected logistics planning module
- Multi-node dispatch simulator
- Scenario testing dashboard

Future Enhancement Roadmap

Phase 2: Multi-Echelon Flow Modeling

Include dealer and retailer routing for deeper distribution optimization.

Phase 3: Dynamic Load **Planning**

Enable real-time truck-fill and smarter dispatch allocation.

Phase 4: Sustainability Metrics

Track CO₂ impact and optimize routes for lower emissions.